skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Jisu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)
    Persistence diagrams are one of the most pop- ular types of data summaries used in Topological Data Analysis. The prevailing statistical approach to analyzing persistence diagrams is concerned with filtering out topological noise. In this paper, we adopt a different viewpoint and aim at estimating the actual distribution of a random persistence diagram, which cap- tures both topological signal and noise. To that effect, Chazal and Divol (2019) proved that, under general conditions, the expected value of a random persistence diagram is a measure admitting a Lebesgue density, called the persistence intensity function. In this paper, we are concerned with estimating the persistence intensity function and a novel, normalized version of it – called the persistence density function. We present a class of kernel- based estimators based on an i.i.d. sample of persistence diagrams and derive estimation rates in the supremum norm. As a direct corollary, we obtain uniform consistency rates for estimating linear representations of persistence diagrams, including Betti numbers and persistence surfaces. Interestingly, the persistence density function delivers stronger statistical guarantees. 
    more » « less
  2. We derive conditions under which the reconstruction of a target space is topologically correct via the Čech complex or the Vietoris-Rips complex obtained from possibly noisy point cloud data. We provide two novel theoretical results. First, we describe sufficient conditions under which any non-empty intersection of finitely many Euclidean balls intersected with a positive reach set is contractible, so that the Nerve theorem applies for the restricted Čech complex. Second, we demonstrate the homotopy equivalence of a positive μ-reach set and its offsets. Applying these results to the restricted Čech complex and using the interleaving relations with the Čech complex (or the Vietoris-Rips complex), we formulate conditions guaranteeing that the target space is homotopy equivalent to the Čech complex (or the Vietoris-Rips complex), in terms of the μ-reach. Our results sharpen existing results. 
    more » « less